This is a revised draft of a paper to appear in “Millennial Perspectives in
Computer Science”, the proceedings of the Oxford—Microsoft Symposium in
Honour of Sir Tony Hoare, (held September 13-15, 1999), to be published
by Palgrave. It supercedes the version (dated August 12, 1999) that was
distributed at the meeting, which contained a serious error.

Intuitionistic Reasoning
about Shared Mutable Data Structure®

John C. Reynolds
Department of Computer Science
Carnegie Mellon University

July 28, 2000

Abstract

Drawing upon early work by Burstall, we extend Hoare’s approach
to proving the correctness of imperative programs, to deal with pro-
grams that perform destructive updates to data structures containing
more than one pointer to the same location. The key concept is an
“independent conjunction” P & () that holds only when P and @)
are both true and depend upon distinct areas of storage. To make
this concept precise we use an intuitionistic logic of assertions, with a
Kripke semantics whose possible worlds are heaps (mapping locations
into tuples of values).

The dichotomy between functional and imperative programming has ob-
scured a variety of programming techniques that fit comfortably in neither
approach. In fact, between these two paradigms there is a no-man’s land in-
habited by many useful and intuitively straightforward programs that have
been poorly served by both type systems and program-proving methodolo-
gies.

*This research was sponsored by National Science Foundation Grant CCR-9804014.

www.manaraa.com

Particularly important are programs where the data structure may con-
tain more than one pointer to the same location, and the program destruc-
tively updates the contents of such locations. This class of programs includes
many interesting and practically important algorithms; it is far more than a
hacker’s jungle. Yet there has been surprisingly little research on reasoning
about such programs.

In 1972, Burstall [1] gave correctness proofs for imperative programs that
alter data structures, by using a novel kind of assertion that he called a “dis-
tinct nonrepeating tree system”; this approach was extended by Kowaltowski
[2]. In 1975, Cook and Oppen [3, 4] devised an more general approach by
extending Hoare logic with extremely complicated inference rules. Then, in
1981, J. M. Morris [5] extended weakest-precondition logic by generalizing
the notion of substitution.

In the late 80’s Mason and Talcott [6, 7, 8] investigated reasoning about
program equivalence for LISP-like functional languages where expression
evaluation can alter data structures as a side effect; more recently they and
others [9, 10] have extended this approach to a logic for reasoning about
programs.

Also recently, Pitts and Stark [11] have studied operational reasoning
about an ML-like language with data-altering expressions. (In this work,
however, only simple values can be stored at locations; not structured values
that themselves contain locations.) This research builds upon earlier work
by Stark [12, 13, 14] on languages that create local names.

The present paper builds upon Burstall’s ideas, which fit nicely into the
framework for reasoning about imperative programs that was devised about
the same time by Hoare [15, 16], as well as earlier work by Floyd [17] and
Naur [18]. Burstall’s “distinct nonrepeating tree system” was a sequence of
assertions, written P; & --- & P, in the notation of this paper, where each
P; described a distinct region of storage, so that an assignment to a single
location could change only one of the P;. I believe that this idea of organizing
assertions to localize the effect of a mutation may be the key to scalability
in reasoning about shared mutable data structure.

The goal of this paper is to overcome two limitations of Burstall’s work.
In his formalism, each P;, which he called a “triple”, described a fragment
of data structure with no internal sharing. (Technically, the triples were
morphisms in categories called “free theories” by Lawvere [19].) Sharing only
occurred among pointers from variables into fragments, or from one fragment
to another, so that a particular assertion could describe only structures with

www.manaraa.com

a fixed finite bound on the number of shared locations.

A subtler limitation was the specific notion of composition of triples.
Roughly speaking, one composed P with) by identifying the pointers coming
out of P with those going into ().

In this paper we will use the doubly-linked list as a simple example that
violates both limitations. In this structure, every location is shared, so that
a description of a fragment representing an arbitrary sequence must permit
unbounded internal sharing. Moreover, the natural way of composing frag-
ments P and @) is to identify both a pointer coming out of P with one going
into (), and a pointer coming out of () with one going into P.

The preliminary version of this paper was flawed by a serious error: The
inference rule for the cons operation was unsound. In the present version
(as discussed at the end of Section 3), we have repaired this flaw, and sub-
stantially simplified our development, by interpreting assertions intuitionisti-
cally, using a Kripke semantics [20] with heaps as possible worlds. A similar
intuitionistic semantics has been discovered independently by Ishtiaq and
O’Hearn [21], using the logic of bunched implications [22].

1 Syntax

The programming language we will use is the simple imperative language
originally axiomatized by Hoare, with additional commands for the manip-
ulation of list structures. These structures will be similar to those of LISP,
restricted by the elimination of property lists for atoms, and extended by
permitting any positive number of values to be “cons-ed” together. Specifi-
cally, the LISP constructor cons will be generalized to cons;, cons,, conss,
etc., and the selectors car(F) and cdr(F) to E.1, F.2, etc.

In contrast to LISP, however, these constructors and selectors will be per-
mitted only in commands, not in expressions. The reason for this restriction
is that the power of the kind of proof system advocated by Hoare (or Floyd
or Dijkstra) depends on the ability to use any expression of the programming
language in an assertion. In particular, substituting any expressions for the
variables of a tautology should give a valid assertion.

Constructors cannot be expressions since they have side effects. For in-
stance, if we could substitute conss(1,2) for x in the tautology x = x, we
would obtain consy(1,2) = consy(1,2), which must not hold if we are going
to distinguish different locations with the same contents.

www.manaraa.com

Selectors cannot be expressions because of their interaction with the “in-
dependent conjunction” operator &. For instance, if we could substitute
z.2 for both x and y in the tautology x = x & y = y, we would obtain
z.2 = z.2 & z.2 = z.2, which is false since the two operands of & do not
depend upon distinct regions of storage.

Instead of permitting constructors and selectors in expressions, we intro-
duce three novel forms of commands, which use constructors to create new
list structures, and selectors to evaluate and mutate such structures:

x:=cons,(F,..., E,)
x:=La
Li:=1

(where the various E’s denote expressions). We have used the assignment
symbol := to give these commands a familiar appearance that should make
their informal meaning obvious. Formally, however, they are not assignment
commands; in particular they will not obey Hoare’s axiom of assignment.

As in Hoare’s work, assertions include boolean expressions, enriched with
quantifiers. In addition, we introduce the form

E— By, B,

which holds if the value of E is a location at which is stored an n-tuple con-
taining the values of Ey, ... E,. Finally, we add the independent conjunction
operator, so that an assertion can have the form

P& P

(where P and P’ denote assertions). Roughly speaking, this form is true
when P and P’ are both true and depend upon distinct regions of storage.
We will define two forms of specification: the original partial-correctness
triple introduced by Hoare, which we will write { P} C' {@Q}, and an analogous
total-correctness specification, which we will write [P] C' [@].

www.manaraa.com

2 Semantics

To make the meaning of our language and its specifications precise, we define
a value to be an integer, an atom, or a location, where integers, atoms, and
locations comprise disjoint, countably infinite sets, and nil is a particular

atom:
Values = Integers U Atoms U Locations

nil € Atoms.

To formalize mutable list structures, we must complicate the usual notion
of the state of a computation, which now consists of two parts: the store,
which maps some finite set of variables into values, and the heap, which maps
some finite set of locations into nonempty tuples of values. Thus

Storesy = (V — Values) where V' is a finite set of variables
Heaps; = (L — Values™) where L is a finite set of locations
Heaps = U #a Heaps;,

L C Locations

Statesy = Storesy x Heaps.

A state (n, o) is said to be complete if the domain of its heap component
includes all locations that occur anywhere within the state, i.e., if
Vo e domn. na e Integers U Atoms U dom o
YVl e domo. o e (Integers U Atoms U dom o).

We define the set
CmplStatesy, = { (n, o) | (n,0) € Statesy and (n, o) is complete }.

For each of the five classes of phrases used in programs or their specifica-
tions, there is a semantic function giving a different kind of meaning. Each of
these semantic functions is indexed by a finite set of variables that must in-
clude the free variables of the argument of the semantic function. (We write
OrdExpy, for the set of ordinary expressions whose free variables belong to
V, and similarly for the other phrase classes.)

www.manaraa.com

Ordinary Expressions

[[_]]c;dexp c OI’dEXpV — Storesy — Values,

e Boolean Expressions

[[_]]E/OOIeXp e BoolExp, — Storesy — {true, false},

Commands

[-17""™" € Commy — CmplStates;, — (CmplStatesy U {—1),

Assertions

[—]2°" € Asserty — Storesy — Heaps — {true, false},

Specifications
[-17°° € Specy, — {true, false}.

Notice that ordinary and boolean expressions do not depend upon the heap.
(This reflects our decision not to permit constructors and selectors in ex-
pressions.) Assertions that do not depend upon the heap are called pure, as
are commands that neither depend upon nor change the heap. (As usual in
denotational semantics, — is used to denote the nonterminating execution of
a command.)

The meaning of expressions, commands, and specifications is standard.
Note, however, that the implicit quantification of specifications extends over
both the store and heap components of complete states:

[{P} C {P}Y™ =V(n,0) e CmplStatesy. [P]no and [C](n, o) # —
implies [P']n'o’ where (0, 0") = [C](n, o)

[[P]C[P Y =V(n, o) e CmplStatesy. [Plno
implies [C'[(n, o) # — and [P']|n'c’ where (', 0") = [C]{(n, o).

What is not standard is the meaning of assertions, which is defined for
incomplete as well as complete states, by a Kripke semantics [20] in which the

www.manaraa.com

possible worlds are heaps, ordered by extension. Thus the logic of assertions
is intuitionistic rather than classical.

When a boolean expression is used as an assertion, it is pure, i.e., its
meaning is independent of the heap:

[[B]]assert iff [[B]]boolexp

The simplest impure assertion is £ — Ey,..., E,, which describes the value
of the heap for a single location:

[E— Ey, ..., B0 iff
[[Ew]]ordexp77 c dom o and U([[E]]ordexp) <[[E]]ordexp [[E]]ordexp >

The operations of conjunction, disjunction, and quantification are defined
conventionally, with the heap being treated pointwise:

[PL A P30 iff [P]3> no and [P]3 " no

[PV P20 S [P0 or [P0
[Va. PI3 " o iff Vo e Values. [P]5" [y | 2:v]o
[Fz. P]3 " o iff Jv e Values. [P]5>"[n | z:v]o.

Here [n | :v] denotes the store, with domain domnU {x}, that maps « into
v and maps all other variables 2’ into n «’. (Analogous quantifiers that range
over integers, atoms, or locations are left to the reader.)

On the other hand, the definitions of implication and negation involve an
implicit universal quantification over extensions of the heap:

[[Pl = Pz]]assertno_ iff \V/O' D o [[Pl]]assertno_ 1mphes [[P]]assert]
[[_| P]]assert o llcf \V/O' D . not [[P]]assert

Finally, we must define the independent conjunction operation &. The
idea that P, and P, must depend upon distinct regions of the heap is captured
by requiring them to hold for restrictions of the heap with disjoint domains:

[[Pl & Pz]]assertno_ it EIO'l, J9.
01 C o and 03 C 0 and dom oy N dom oy empty

and [[P]]assertno_1 and [[Pz]]assert

7

www.manaraa.com

We are able to define independent conjunction so simply because we have
given meaning to assertions in all states, not just complete states, and be-
cause this meaning obeys a monotonicity law that is characteristic of Kripke

semantics:
If [P o and o C o', then [P]3*"no’.

To obtain this property, however, we have sacrificed the law of the excluded
middle. For instance, if the store n maps the variable x into a location that
does not belong to the domain of the heap o, then

assert assert assert

[x — 713" no, [-x = 77" no, [x = 7V-x—=T7""n0

are all false.
As one expects in an intuitionistic logic, one has axiom schemata such as

Ve, = P < —(Jz. P)
Jz. = P = =(Vz. P)
P = —=(=P),
but not the converses of the second and third lines. (Pure assertions, however,
which are those that do not contain —, behave classically.)
Insight into the operation of independent conjunction is provided by a

simple example: Suppose 1 is a store that maps x and y into distinct locations,
and consider the heaps

01 = {<77X7 1>} and 02 = {<77 Y72>}7

which have disjoint domains. Then

If P is: then [P]no is:
x—1 oy Co

y — 2 o9 Co
x—1&y—2 ooUoy Co
x—=1&(x—=1Vy—2) orUoy Co
x—=1Vy—=2)&(x—=1Vy—2) oUoy, Co
x—=>1&y—=2&(x—1Vy—2) false.

8

www.manaraa.com

In general, independent conjunction is described by the axiom schemata

P& P= P AP
PiANP,= P & P, when P, is pure
P&EP S PEPR
(P& P)& Pss PL& (P& Ps)
(P& P)V (P& Ps) & (PLV P) & Ps
(PLV Py) & (PaV Py) = (P & Po) V Py
(Jz. 1) & P & Ja. (P & Py) when 2 not free in P,

and the inference rule

P= 5B
P& Ps= P & Ps.

Note, however, that the analogous schemata (P = P,) = (P& Ps = P &
Ps) is not valid.

3 Inference Rules for Specifications

By prohibiting expressions from depending upon the heap, we insure that
both the partial-correctness rules given by Hoare and the analogous total-
correctness rules (see, for example, [23, Chapter 3]) remain valid, even for
assertions containing &. Thus we need to introduce additional rules only
for the new commands that depend upon or affect the heap. Since the new
commands always terminate, these rules are identical for partial and total
correctness.

First, we have the command x := E.7, which examines the tuple stored in
the heap at the location that is the value of £, and makes the ith component
of this tuple the value of z. This operation is similar enough to assignment
that one might hope to extend Hoare’s assignment axiom to describe it. But
that axiom involves a substitution that would insert £.7 into expressions,
violating their purity. (If such substitutions were allowed, they would not
preserve &.) Instead, we must mimic the effect of such a substitution by
using existential quantifiers:

www.manaraa.com

Suppose that zy, ..., x, are distinct variables that do not occur
free in E, that 1 <1 < n, and that x; does not occur free in P.
Let P® denote the result of substituting x; for in P. Then

{Jz;. (P(i) ANFxq, oo @i, Tty e e By,)}

z:=F.
{P}.
Next, we have the command « := cons,(F,..., F,), which extends the
heap with a new location mapped into the n-tuple of values of Ey, ..., F,,

and then makes the new location the value of z. Again, we cannot use
Hoare’s assignment axiom; instead we introduce an existential quantifier in
the postcondition, in the style of Floyd [17]. The & operation is used to
assert that the new location plays no role in any part of the postcondition
that is inherited from the precondition:

Suppose that the variables x and 2’ are distinct, and that 2’ does
not occur free in Fy, ... E,, or P. Let X’ denote the result of
substituting @’ for « in the expression or assertion X. Then

{r}
z:=cons,(Fi,...,F,)
{2/ (P& ax— E,. .. B}

Happily, this rule can be simplified when the variable x does not occur in the
precondition or the right side of the command being specified:

Suppose that the variables = does not occur free in Ey, ..., E,

or P. Then
{P}

z:=cons,(Fi,...,F,)

{P&x— Ey, ..., E,}.
Finally, we have a rule for the command F.i.:=F’, which alters the heap at
the location that is the value of F by changing the ith component of the tuple
at that location to the value of E’. Here the & operator in the precondition

separates an assertion about the heap at the value of £ from assertions about
other parts of the heap, which are not affected by the command:

10

www.manaraa.com

Suppose that the variables xy, ..., x,, do not occur free in the
expression F or I, and that 1 <7 < n. Then

{Ell’l,...,l’m. (E-}El,,E“,En&P)}
Ei:=F
{Ell’l,...,l’m. (E-}El,,El,,En&P)}

The importance of using an intuitionistic logic is illustrated by the fol-
lowing instance of the simplified cons-rule:

{=(Ix.x—1,2)}
y := consy(1,2)
{(=(Ix.x—=1,2)) &y — 1,2}

Although its postcondition is always false, this instance is not unsound, be-
cause the precondition is always false in our intuitionistic logic — since it
must hold for all extensions of the heap that was current immediately be-
fore execution of the cons operation, including the extension that is current
immediately afterwards.

(This instance was unsound, however, in the classical logic used in the
preliminary version of this paper.)

4 Inductive Definition of Predicates

To deal with real programs (even small ones), we must permit predicates to
be defined by induction over sets of abstract data.

For instance, to prove the correctness of a program that uses some list
representation, it is not enough to be able to assert that something is a
list representation; one must say that it represents a particular sequence of
values. Thus one must define “is representation of” as a function from the
abstract data set “sequence of values” to predicates.

Specifically (though without being as formal as in previous sections), we
will allow variables that occur in assertions but not in programs (often called
logical or ghost variables) to range over inductively defined sets, and we will
allow functions from such sets to predicates to be defined by induction (i.e.,
by primitive recursion).

As a first example, consider the representation of sequences by singly-
linked lists. (This example is essentially similar to one of Burstall’s.) We

11

www.manaraa.com

write € to denote the empty sequence, use other Greek letters as variables
ranging over sequences, write - to indicate concatenation, and assume that a
value is a sequence of length one. Then

list e (i,j) =i=]
lista-a(i,k) = 3j.i— a,j & list o (j, k)

is an inductive definition of a function list, from sequences to predicates, such
that list a(i,J) asserts that the sequence « is represented by the list fragment
from location i to . More precisely, it asserts that there is a succession of
cons,-cells beginning at location I, containing the successive elements of «
as their first components, and linked together by their second components,
with a final link containing j:

From this definition, it is obvious that
lista(i,j) <1 — a,j.
Less trivially, one can show by induction on the length of « that
list o3 (i, k) < Jj. list « (i) & list 3 (j, k),
and from this result one can obtain
list o-b (i, k) < Jj. list e (i,)) & j — b, k.

Because of the use of & in the definition of list, the assertion list a (i,])
implies that the list fragment from i1 to j contains a distinct conss-cell for
each element of a. Nevertheless, J can be the location of one of these cells,
in which case a cyclic structure is being described. For instance, when « is
nonempty, list « (i,1) describes a cycle whose length is the length of «.

However, when 1 = nil, the assertion i — a,j cannot hold, so that
list a-v (i, k) cannot hold. In fact,

(i:nil:>(oz:c/\j:nil)))
A (1£]=a#e).

12

list o (i,) = (

www.manaraa.com

A more complex example, which goes beyond Burstall’s framework, is the
representation of sequences by doubly-linked lists. We write dlist o (i, 1,], ')
to assert the existence of a a collection of conss-cells whose first components
give the elements of a, whose second components are the links of a forward
list beginning at | with a final link containing j, and whose third components
are the links of a backward list beginning at j’ with a final link containing i’:

I J
| |
aq (7%
i e e -

This function can be defined inductively by
diiste(i,i’,j,)) =i=j&i =]
diista-o (i,1', k, k') = Jj.1 — a,j,1" & dlist o (j, 1, k, k').
From this definition, it is obvious that
dlista(i,i',j,j') &i—a,j,i &i=].
Less trivially, one can show by induction on the length of « that
dlist a-3 (i,i', k, k") < 3,). dlist « (i,1',],]") & dlist 3 (J,], k, k'),

and from this result one can obtain

dlist a-b (i,1', k, k') < Jj. dlist a (i,1", k', J') & k" — b, k,J".

Much as in the singly-linked case, the assertion dlist o (i,1', J,J') describes a
list fragment containing a distinct conss-cell for each element of o. The exis-
tence of unique back-links prevents a list from having a cyclic tail, but one can
still have an isolated cyclic list, which would be described by dlist o (i, 1',1,1")
when « is nonempty.

Finally, to distinguish empty from nonempty lists, one can derive

(i=nil= (a=ecAj=nilAi =]))
A (=nill= (a=eAl =nilAi=])))
A (1£]=a#e¢)
N (T#E] = a#e

dlist a (i,i',J,)') =

13

www.manaraa.com

5 Annotated Specifications

For even a small program, a formal proof of its specification, in the sense
of a sequence (or tree) of instances of inference rules, is usually too large to
be readable. Fortunately, one can annotate a specification with intermediate
assertions in such a way that its proof can be mechanically and straightfor-
wardly derived from the annotations.

In the next section, we will give an illustrative proof in the form of an an-
notated specification. Before doing so, however, it is useful — independently
of the main subject of this paper — to define the notion precisely (for the
partial-correctness case).

The basic idea goes back at least to the “proof outlines” of concur-
rent computations by Owicki and Gries [24], which have been formalized
by Schneider [25, Chapter 4]. Our formulation for sequential programs, how-
ever, permits the omission of many intermediate assertions that can be de-
rived straightforwardly from their context.

We will call a specification annotated if it can be derived from the inference
rules to be given below. All of these rules are easily derivable from Hoare’s
rules and the rules given in Section 3, except that intermediate assertions
occur in the conclusions of certain rules. Because of the presence of these
intermediate assertions, the rules are determinate, i.e., every specification
can be the conclusion of an instance of at most one rule, and the premisses
of this instance are determined by its conclusion. Thus it is straightforward
to derive a proof of an annotated specification from the specification itself,
and a Hoare-style proof (albeit using derived rules) can then be obtained
by erasing the intermediate assertions. (Of course, this proof will contain
verification conditions, i.e., unproved implications between assertions, that
must be verified independently. Pragmatically, one must supply enough in-
termediate assertions to make this verification tractable.)

The first two rules deal with assignment. Their determinacy stems from
the fact that, in Hoare’s assignment axiom, the precondition P/a — F is
determined by the postcondition P and the assignment command x := F:

FPy= Plz - E {P} C{P/x — E}
{Po} v:=FEA{P} {P} Cia:=FEA{P}.

A similar situation holds for the rule for the select-and-assign command
x := F.1, where again the precondition is determined by the postcondition
and the command:

14

www.manaraa.com

Suppose that zy, ..., x, are distinct variables that do not occur
free in E, that 1 <1 < n, and that x; does not occur free in P.
Let P® denote the result of substituting x; for in P. Then

Py = dx;. (P(i) ANFer, o @im1, ity e B = xy, o y)
{P} z:=FEa1{P}
{P} C {Fa,. (P(i) ANFxq, oo i, Tty ey T By,)}
{P} Cia:=F.i{P}.
In contrast, the remaining axioms for heap-dependent commands given in
Section 3 have the property that their postcondition is determined by their

precondition and the heap-dependent command. This insures the determi-
nacy of:

Suppose that the variables x and 2’ are distinct, and that 2’ does
not occur free in Fy, ... E,, or P. Let X’ denote the result of
substituting @’ for « in the expression or assertion X. Then

(F2' (P& a— E],...,E)) =P’
{P} x:=cons,(Fy,...,F,){P"}
{F'. (P& ax— F, .. B} CA{P"}
{P} z:=cons,(Fy,...,FE,);C{P"}.

Suppose that the variables xy, ..., x,, do not occur free in the
expression F or E’, and that 1 <7 <n. Then

(Fay, ..o, am (B — By B . E, & P))= P
{Fey,.. s (E—= Ey,. . By ... B, & P)} Eai=FE {P"}
{Feq,..yam. (E—= By, . F, ..., E, & P)} C{P"}
{Feq,.. o (E—= By, . B, E, & P)} Ea:=F;C{P"}.
Next, we have rules for skip, if, and while commands:
P=F {PANB}Cy {P'} {PAN-B}Cy {P'}
{P} skip {P'} {P} if B then (else C, fi {P'}
{PAB}C{P} (PAN=B)=F'
{P} while B do C od {P'}.

15

www.manaraa.com

Finally, there are rules corresponding to Hoare’s rules for sequencing,
strengthening preconditions, and weakening postconditions. It is in the con-
clusions of these rules that the intermediate assertions appear:

(PYC (P} {P}C{P)
[P} C s (P} O {P"}
P=rPr {PYC{P"} (Pyc{pry P =pv
(P} {P'} C {P"} (P} C P} {P"}.

6 An Example

In conclusion, we illustrate our formalism with an example: an annotated
partial-correctness specification of a program for deleting zero-valued ele-
ments from a doubly-linked list.

Throughout execution of the program, the forward linkage of the list
begins at location I and the backward linkage begins at location m. There
is a single loop which moves forward through the list. Within this loop, the
deletion operation is symmetric about the cell to be deleted.

Just before the test b = 0, the variable k points to the cell to be tested
and perhaps removed, the preceding list fragment has a forward linkage from
I to k and a backward linkage from j to nil, and the following list fragment
has a forward linkage from | to nil and a backward linkage from m to k:

i J k I m
| |) |)
ay . b B By
T — -+ — nil
nil -~ — -~

If the current cell is to be removed, the program tests whether the preceding
list fragment is empty, and resets either i or the last forward link to point to
the following list fragment. Then it performs a symmetric operation on the
following list fragment.

The notation o — 0 denotes the sequence obtained from « by deleting all
occurrences of zero.

16

www.manaraa.com

{dlist v (i, nil, nil, m)}
{Ja, 5, &. dlist & (i, nil, i, nil) & dlist 5 (i, nil, nil, m)
Lapf=y&a—-0=4a}
k:=i;j:=mnil;
{Ja, 3, & dlist & (i, nil, k,) & dlist 3 (k, j, nil, m)
Lapf=y&a—-0=4a}
while k # nil do
{Ja, B, &,b, 1. dlist & (i,nil, k, j) & k — b, 1,j & dlist 3 (1, k, nil, m)
Labf=y&a—-0=4a}
b:=k.1;l:=k.2;
{Ja, 5, a. dlist & (i,nil, k,j) & k — b, I,j & dlist 5 (I, k, nil, m)
Labf=y&a—-0=4a}
if b = 0 then
{Ja, B, &. dlist & (i, nil, k, j) & dlist 3 (I, k, nil, m)
& a08=~& (a:0)—0=4a}
{Ja, B, &. dlist & (i, nil, k, j) & dlist 3 (I, k, nil, m)
Lap=y&a—-0=a}
if j = nil then
{Ja,B8,6. ¢ = e & 1=k & nil = j & dlist 3 (1, k, nil, m)
Lapf=y&a—-0=4a}
1=
{Ja, 8,6 a =e&i=1&nil = & dlist 5 (1, k,nil, m)
Lapf=y&a—-0=4a}
else
{Ja, 8, &,a,n. dlist & (i,nil, j,n) & j — a,k,n & dlist 3 (1, k, nil, m)
Lapf=v&a—-0=aa}
1.2:=1
{Ja, 3, é&,a,n. dlist & (i,nil, j,n) & j — a,l,n & dlist 3 (I, k, nil, m)
Lapf=v&a—-0=aa}

17

www.manaraa.com

{Ja, 5, &. dlist & (i,nil, |, j) & dlist 5 (1, k, nil, m)
Laf=y&a—-0=4}
if | = nil then
{Fa, B, a. dlist & (i,nil, L)) & f=e& I=nil& k=m
Lalf=y&a—-0=4a}
m:=]
{Ja, B, a. dlist & (i,nil, L)) & f=e&I=nil&j=m
Lalf=y&a—-0=4a}
else
{Ja, 8, &, a,n. dlist & (i,nil, |, j) & | — a,n, k & dlist 5 (n,], nil, m)
Laaf=vy&a-0=a}
[.3:=
{Ja, 8, &,a,n. dlist & (i,nil, |, j) & | — a,n,j & dlist 3 (n,], nil, m)
Laaf=y&a-0=a}
fi
else
{Ja, 3, &. dlist &-b (i, nil, I k) & dlist 5 (1, k, nil, m)
&abp=v& (ab)—0=ab}
{Ja, B, a. dlist & (i,nil, | k) & dlist 5 (1, k, nil, m)
Laf=y&a—-0=4}
j:=k
fi;
{Ja, B, . dlist & (i, nil, |, j) & dlist 5 (1, j, nil, m)
Laf=y&a-0=a}
k:=1
od
{dlist (v — 0) (i, nil, nil, m)}

18

www.manharaa.com

7 Future Directions

The work described here is very preliminary, so that the most immediate
need is to explore more examples. In particular, it is not clear that every
abstract structure represented by mutable data structures can be defined
inductively; for example, mutable data structures are often used to represent
cyclic graphs.

[t may be possible to extend our approach to dynamic logic [26], where
commands can occur as modal operators within assertions. This would ne-
cessitate giving meaning to the execution of commands in incomplete states.
When a command tries to examine a heap outside of its domain, it would
raise a “heap fault” that would make the immediately enclosing assertion

false.
It is easy to prove
{true}
x:=consy(1,2);
{x— 1,2}
X:=3

{(Ix. x = 1,2) Ax = 3}.

Here the existentially quantified location is disconnected from the data struc-
tures accessible to the computation, and can be eliminated by garbage collec-
tion. Of course, one can view garbage collection as a program optimization
with no effect on observable computations, so that this example is sound.
Nevertheless the fact that dx. x — 1,2 is an “unobservable assertion” is
worrisome.

It should be straightforward to impose upon the present development a
type system based upon recursive data type declarations (similar to those in
Standard ML but without the reference concept). More refined type systems
might permit the specification of which fields are mutable or where pointers
are required to be unique.

Finally, there is a need to move towards some form of higher-order formal-
ism, akin to object-oriented programming, where the mutable shared data
structures can contain closures. An obvious question is whether there is a
connection with syntactic control of interference [27, 28, 29] or specification
logic [30, 31, 32], both of which deal with interference in a higher-order but
heap-free setting. Superficially this work seems quite different, but the re-
curring use of possible-world semantics is suggestive.

19

www.manaraa.com

Acknowledgements

The author would like to thank Peter O’Hearn for his insights and helpful
suggestions.

References

[1] Rodney M. Burstall. Some techniques for proving correctness of pro-
grams which alter data structures. In Bernard Meltzer and Donald
Michie, editors, Machine Intelligence 7, pages 23-50. Edinburgh Uni-
versity Press, Edinburgh, Scotland, 1972.

[2] T. Kowaltowski. Correctness of programs manipulating data structures.
Memorandum ERL-M404, University of California, Berkeley, California,
September 1973.

[3] Stephen A. Cook and Derek C. Oppen. An assertion language for data
structures. In Conference Record of the Second ACM Symposium on
Principles of Programming Languages, pages 160-166, New York, 1975.
ACM.

[4] Derek C. Oppen and Stephen A. Cook. Proving assertions about pro-
grams that manipulate data structures. In Proceedings of Seventh An-
nual ACM Symposium on Theory of Computing, pages 107-116, New
York, 1975. ACM.

[5] Joseph M. Morris. A general axiom of assignment; assignment and linked
data structures; a proof of the Schorr-Waite algorithm. In Manfried Broy
and Gunther Schmidt, editors, Theoretical Foundations of Programming
Methodology, pages 25-51. D. Reidel, Dordrecht, Holland, 1982.

[6] Tan A. Mason. The Semantics of Destructive Lisp. CSLI Lecture Notes
Number 5. Center for the Study of Language and Information, Menlo
Park, CA, 1986.

[7] Tan A. Mason. Verification of programs that destructively manipulate
data. Science of Computer Programming, 10(2):177-210, April 1988.

20

www.manaraa.com

3]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Tan A. Mason and Carolyn Talcott. Equivalence in functional languages
with effects. Journal of Functional Programming, 1(3):287-327, July
1991.

Furio Honsell, Tan A. Mason, Scott Smith, and Carolyn Talcott. A
variable typed logic of effects. Information and Computation, 119(1):55—
90, May 15, 1995.

Tan A. Mason. A first order logic of effects. Theoretical Computer Sci-
ence, 185(2):277-318, October 20, 1997.

Andrew M. Pitts and lan D. B. Stark. Operational reasoning for func-
tions with local state. In Andrew D. Gordon and Andrew M. Pitts,
editors, Higher Order Operational Techniques in Semantics, pages 227—
273. Cambridge University Press, 1998.

lan D. B. Stark. Names and Higher-Order Functions. Ph. D. disserta-
tion, University of Cambridge, Cambridge, England, December 1994.

[an D. B. Stark. Categorical models for local names. Lisp and Symbolic
Computation, 9(1):77-107, February 1996.

[an D. B. Stark. Names, equations, relations: Practical ways to reason
about new. Fundamenta Informaticae, 33:369-396, 1998.

C. A.R. Hoare. An axiomatic basis for computer programming. Commu-
nications of the ACM, 12(10):576-580 and 583, October 1969. Reprinted
in [33, pages 89-100].

C. A. R. Hoare. Proof of a program: FIND. Communications of the
ACM, 14(1):39-45, January 1971. Reprinted in [33, pages 101-115].

Robert W. Floyd. Assigning meanings to programs. In J. T. Schwartz,
editor, Mathematical Aspects of Computer Science, volume 19 of Pro-
ceedings of Symposia in Applied Mathematics, pages 19-32, Providence,
Rhode Island, 1967. American Mathematical Society.

Peter Naur. Proof of algorithms by general snapshots. BIT, 6:310-316,
1966.

21

www.manaraa.com

[19] F. William Lawvere. Functorial semantics of algebraic theories. Pro-
ceedings of the National Academy of Sciences of the United States of
America, 50(1):869-872, July 1963.

[20] Saul A. Kripke. Semantical analysis of intuitionistic logic i. In John N.
Crossley and Michael A. E. Dummett, editors, Formal Systems and Re-
cursive Functions, Studies in Logic and the Foundations of Mathematics,

pages 92-130, Amsterdam, 1965. North-Holland.
[21] Peter W. O’Hearn. Private communication. dated January 17, 2000.

[22] Peter W. O’Hearn and David J. Pym. The logic of bunched implications.
Bulletin of Symbolic Logic, 5(2):215-244, June 1999.

[23] John C. Reynolds. Theories of Programming Languages. Cambridge
University Press, Cambridge, England, 1998.

[24] Susan Speer Owicki and David Gries. An axiomatic proof technique for
parallel programs I. Acta Informatica, 6(4):319-340, 1976. Reprinted in
[33, pages 130-152].

[25] Fred B. Schneider. On Concurrent Programming. Springer-Verlag, New
York, 1997.

[26] Vaughan R. Pratt. Semantical considerations on Floyd-Hoare logic. In
17th Annual Symposium on Foundations of Computer Science, pages

109-121, Long Beach, California, 1976. IEEE Computer Society.

[27] John C. Reynolds. Syntactic control of interference. In Conference
Record of the Fifth Annual ACM Symposium on Principles of Program-
ming Languages, pages 39-46, New York, 1978. ACM. Reprinted in [34,
vol. 1, pages 273-286].

[28] Peter W. O’Hearn, A. John Power, Makoto Takeyama, and Robert D.
Tennent. Syntactic control of interference revisited. FElectronic Notes
in Theoretical Computer Science, 1, 1995. Reprinted in [34, vol. 2,
pages 189-225].

[29] Uday S. Reddy. Global state considered unnecessary: An introduction
to object-based semantics. Lisp and Symbolic Computation, 9(1):7-76,
February 1996. Reprinted in [34, vol. 2, pages 227-295].

22

www.manaraa.com

[30] John C. Reynolds. Idealized Algol and its specification logic. In Danielle
Néel, editor, Tools and Notions for Program Construction, pages 121—
161, Cambridge, England, 1982. Cambridge University Press. Reprinted
in [34, vol. 1, pages 125-156].

[31] Robert D. Tennent. Semantical analysis of specification logic. Infor-
mation and Computation, 85(2):135-162, April 1990. Reprinted in [34,
vol. 2, pages 41-64].

[32] Peter W. O’Hearn and Robert D. Tennent. Semantical analysis of speci-
fication logic, 2. Information and Computation, 107(1):25-57, November
1993. Reprinted in [34, vol. 2, pages 65-93].

[33] David Gries, editor. Programming Methodology. Springer-Verlag, New
York, 1978.

[34] Peter W. O’Hearn and Robert D. Tennent, editors. ALGOL-like Lan-

guages. Birkhauser, Boston, Massachusetts, 1997. Two volumes.

23

www.manaraa.com

