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This is a revised draft of a paper to appear in \Millennial Perspectives inComputer Science", the proceedings of the Oxford{Microsoft Symposium inHonour of Sir Tony Hoare, (held September 13{15, 1999), to be publishedby Palgrave. It supercedes the version (dated August 12, 1999) that wasdistributed at the meeting, which contained a serious error.Intuitionistic Reasoningabout Shared Mutable Data Structure�John C. ReynoldsDepartment of Computer ScienceCarnegie Mellon UniversityJuly 28, 2000AbstractDrawing upon early work by Burstall, we extend Hoare's approachto proving the correctness of imperative programs, to deal with pro-grams that perform destructive updates to data structures containingmore than one pointer to the same location. The key concept is an\independent conjunction" P & Q that holds only when P and Qare both true and depend upon distinct areas of storage. To makethis concept precise we use an intuitionistic logic of assertions, with aKripke semantics whose possible worlds are heaps (mapping locationsinto tuples of values).The dichotomy between functional and imperative programming has ob-scured a variety of programming techniques that �t comfortably in neitherapproach. In fact, between these two paradigms there is a no-man's land in-habited by many useful and intuitively straightforward programs that havebeen poorly served by both type systems and program-proving methodolo-gies.�This research was sponsored by National Science Foundation Grant CCR-9804014.1
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Particularly important are programs where the data structure may con-tain more than one pointer to the same location, and the program destruc-tively updates the contents of such locations. This class of programs includesmany interesting and practically important algorithms; it is far more than ahacker's jungle. Yet there has been surprisingly little research on reasoningabout such programs.In 1972, Burstall [1] gave correctness proofs for imperative programs thatalter data structures, by using a novel kind of assertion that he called a \dis-tinct nonrepeating tree system"; this approach was extended by Kowaltowski[2]. In 1975, Cook and Oppen [3, 4] devised an more general approach byextending Hoare logic with extremely complicated inference rules. Then, in1981, J. M. Morris [5] extended weakest-precondition logic by generalizingthe notion of substitution.In the late 80's Mason and Talcott [6, 7, 8] investigated reasoning aboutprogram equivalence for LISP-like functional languages where expressionevaluation can alter data structures as a side e�ect; more recently they andothers [9, 10] have extended this approach to a logic for reasoning aboutprograms.Also recently, Pitts and Stark [11] have studied operational reasoningabout an ML-like language with data-altering expressions. (In this work,however, only simple values can be stored at locations; not structured valuesthat themselves contain locations.) This research builds upon earlier workby Stark [12, 13, 14] on languages that create local names.The present paper builds upon Burstall's ideas, which �t nicely into theframework for reasoning about imperative programs that was devised aboutthe same time by Hoare [15, 16], as well as earlier work by Floyd [17] andNaur [18]. Burstall's \distinct nonrepeating tree system" was a sequence ofassertions, written P1 & � � � & Pn in the notation of this paper, where eachPi described a distinct region of storage, so that an assignment to a singlelocation could change only one of the Pi. I believe that this idea of organizingassertions to localize the e�ect of a mutation may be the key to scalabilityin reasoning about shared mutable data structure.The goal of this paper is to overcome two limitations of Burstall's work.In his formalism, each Pi, which he called a \triple", described a fragmentof data structure with no internal sharing. (Technically, the triples weremorphisms in categories called \free theories" by Lawvere [19].) Sharing onlyoccurred among pointers from variables into fragments, or from one fragmentto another, so that a particular assertion could describe only structures with2
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a �xed �nite bound on the number of shared locations.A subtler limitation was the speci�c notion of composition of triples.Roughly speaking, one composed P withQ by identifying the pointers comingout of P with those going into Q.In this paper we will use the doubly-linked list as a simple example thatviolates both limitations. In this structure, every location is shared, so thata description of a fragment representing an arbitrary sequence must permitunbounded internal sharing. Moreover, the natural way of composing frag-ments P and Q is to identify both a pointer coming out of P with one goinginto Q, and a pointer coming out of Q with one going into P .The preliminary version of this paper was 
awed by a serious error: Theinference rule for the cons operation was unsound. In the present version(as discussed at the end of Section 3), we have repaired this 
aw, and sub-stantially simpli�ed our development, by interpreting assertions intuitionisti-cally, using a Kripke semantics [20] with heaps as possible worlds. A similarintuitionistic semantics has been discovered independently by Ishtiaq andO'Hearn [21], using the logic of bunched implications [22].1 SyntaxThe programming language we will use is the simple imperative languageoriginally axiomatized by Hoare, with additional commands for the manip-ulation of list structures. These structures will be similar to those of LISP,restricted by the elimination of property lists for atoms, and extended bypermitting any positive number of values to be \cons-ed" together. Speci�-cally, the LISP constructor cons will be generalized to cons1, cons2, cons3,etc., and the selectors car(E) and cdr(E) to E:1, E:2, etc.In contrast to LISP, however, these constructors and selectors will be per-mitted only in commands, not in expressions. The reason for this restrictionis that the power of the kind of proof system advocated by Hoare (or Floydor Dijkstra) depends on the ability to use any expression of the programminglanguage in an assertion. In particular, substituting any expressions for thevariables of a tautology should give a valid assertion.Constructors cannot be expressions since they have side e�ects. For in-stance, if we could substitute cons2(1; 2) for x in the tautology x = x, wewould obtain cons2(1; 2) = cons2(1; 2), which must not hold if we are goingto distinguish di�erent locations with the same contents.3
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Selectors cannot be expressions because of their interaction with the \in-dependent conjunction" operator &. For instance, if we could substitutez:2 for both x and y in the tautology x = x & y = y, we would obtainz:2 = z:2 & z:2 = z:2, which is false since the two operands of & do notdepend upon distinct regions of storage.Instead of permitting constructors and selectors in expressions, we intro-duce three novel forms of commands, which use constructors to create newlist structures, and selectors to evaluate and mutate such structures:x := consn(E1; : : : ; En)x := E:iE:i := E 0(where the various E's denote expressions). We have used the assignmentsymbol := to give these commands a familiar appearance that should maketheir informal meaning obvious. Formally, however, they are not assignmentcommands; in particular they will not obey Hoare's axiom of assignment.As in Hoare's work, assertions include boolean expressions, enriched withquanti�ers. In addition, we introduce the formE ! E1; : : : ; En;which holds if the value of E is a location at which is stored an n-tuple con-taining the values of E1, . . .En. Finally, we add the independent conjunctionoperator, so that an assertion can have the formP & P 0(where P and P 0 denote assertions). Roughly speaking, this form is truewhen P and P 0 are both true and depend upon distinct regions of storage.We will de�ne two forms of speci�cation: the original partial-correctnesstriple introduced by Hoare, which we will write fPg C fQg, and an analogoustotal-correctness speci�cation, which we will write [ P ] C [Q ].4
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2 SemanticsTo make the meaning of our language and its speci�cations precise, we de�nea value to be an integer, an atom, or a location, where integers, atoms, andlocations comprise disjoint, countably in�nite sets, and nil is a particularatom: Values = Integers [Atoms [ Locationsnil 2 Atoms:To formalize mutable list structures, we must complicate the usual notionof the state of a computation, which now consists of two parts: the store,which maps some �nite set of variables into values, and the heap, which mapssome �nite set of locations into nonempty tuples of values. ThusStoresV = (V ! Values) where V is a �nite set of variablesHeapsL = (L! Values+) where L is a �nite set of locationsHeaps = SL�n�LocationsHeapsLStatesV = StoresV �Heaps:A state h�; �i is said to be complete if the domain of its heap componentincludes all locations that occur anywhere within the state, i.e., if8x 2 dom �: � x 2 Integers [Atoms [ dom�8` 2 dom�: � ` 2 (Integers [Atoms [ dom�)+:We de�ne the setCmplStatesV = f h�; �i j h�; �i 2 StatesV and h�; �i is completeg:For each of the �ve classes of phrases used in programs or their speci�ca-tions, there is a semantic function giving a di�erent kind of meaning. Each ofthese semantic functions is indexed by a �nite set of variables that must in-clude the free variables of the argument of the semantic function. (We writeOrdExpV for the set of ordinary expressions whose free variables belong toV , and similarly for the other phrase classes.)5
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� Ordinary Expressions[[�]]ordexpV 2 OrdExpV ! StoresV ! Values;� Boolean Expressions[[�]]boolexpV 2 BoolExpV ! StoresV ! ftrue; falseg;� Commands[[�]]commV 2 CommV ! CmplStatesV ! (CmplStatesV [ f?g);� Assertions[[�]]assertV 2 AssertV ! StoresV ! Heaps! ftrue; falseg;� Speci�cations [[�]]specV 2 SpecV ! ftrue; falseg:Notice that ordinary and boolean expressions do not depend upon the heap.(This re
ects our decision not to permit constructors and selectors in ex-pressions.) Assertions that do not depend upon the heap are called pure, asare commands that neither depend upon nor change the heap. (As usual indenotational semantics, ? is used to denote the nonterminating execution ofa command.)The meaning of expressions, commands, and speci�cations is standard.Note, however, that the implicit quanti�cation of speci�cations extends overboth the store and heap components of complete states:[[fPg C fP 0g]]specV = 8h�; �i 2 CmplStatesV : [[P ]]�� and [[C]]h�; �i 6= ?implies [[P 0]]�0�0 where h�0; �0i = [[C]]h�; �i[[[ P ] C [ P 0 ]]]specV = 8h�; �i 2 CmplStatesV : [[P ]]��implies [[C]]h�; �i 6= ? and [[P 0]]�0�0 where h�0; �0i = [[C]]h�; �i:What is not standard is the meaning of assertions, which is de�ned forincomplete as well as complete states, by a Kripke semantics [20] in which the6
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possible worlds are heaps, ordered by extension. Thus the logic of assertionsis intuitionistic rather than classical.When a boolean expression is used as an assertion, it is pure, i.e., itsmeaning is independent of the heap:[[B]]assertV �� i� [[B]]boolexpV �:The simplest impure assertion is E ! E1; : : : ; En, which describes the valueof the heap for a single location:[[E ! E1; : : : ; En]]assertV �� i�[[E]]ordexpV � 2 dom� and �([[E]]ordexpV �) = h[[E1]]ordexpV �; : : : ; [[En]]ordexpV �i:The operations of conjunction, disjunction, and quanti�cation are de�nedconventionally, with the heap being treated pointwise:[[P1 ^ P2]]assertV �� i� [[P1]]assertV �� and [[P2]]assertV ��[[P1 _ P2]]assertV �� i� [[P1]]assertV �� or [[P2]]assertV ��[[8x: P ]]assertV �� i� 8v 2 Values: [[P ]]assertV [ � j x: v ]�[[9x: P ]]assertV �� i� 9v 2 Values: [[P ]]assertV [ � j x: v ]�:Here [ � j x: v ] denotes the store, with domain dom�[fxg, that maps x intov and maps all other variables x0 into � x0. (Analogous quanti�ers that rangeover integers, atoms, or locations are left to the reader.)On the other hand, the de�nitions of implication and negation involve animplicit universal quanti�cation over extensions of the heap:[[P1 ) P2]]assertV �� i� 8�0 � �: [[P1]]assertV ��0 implies [[P2]]assertV ��0[[:P ]]assertV �� i� 8�0 � �: not [[P ]]assertV ��0:Finally, we must de�ne the independent conjunction operation &. Theidea that P1 and P2 must depend upon distinct regions of the heap is capturedby requiring them to hold for restrictions of the heap with disjoint domains:[[P1 & P2]]assertV �� i� 9�1; �2:�1 � � and �2 � � and dom�1 \ dom�2 emptyand [[P1]]assertV ��1 and [[P2]]assertV ��2:7
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We are able to de�ne independent conjunction so simply because we havegiven meaning to assertions in all states, not just complete states, and be-cause this meaning obeys a monotonicity law that is characteristic of Kripkesemantics: If [[P ]]assertV �� and � � �0; then [[P ]]assertV ��0:To obtain this property, however, we have sacri�ced the law of the excludedmiddle. For instance, if the store � maps the variable x into a location thatdoes not belong to the domain of the heap �, then[[x ! 7]]assertV ��; [[: x ! 7]]assertV ��; [[x ! 7 _ : x ! 7]]assertV ��are all false.As one expects in an intuitionistic logic, one has axiom schemata such as8x: :P , :(9x: P )9x: :P ) :(8x: P )P ) :(:P );but not the converses of the second and third lines. (Pure assertions, however,which are those that do not contain !, behave classically.)Insight into the operation of independent conjunction is provided by asimple example: Suppose � is a store that maps x and y into distinct locations,and consider the heaps�1 = fh� x; 1ig and �2 = fh� y; 2ig;which have disjoint domains. ThenIf P is: then [[P ]]�� is:x ! 1 �1 � �y ! 2 �2 � �x ! 1 & y ! 2 �1 [ �2 � �x ! 1 & (x ! 1 _ y ! 2) �1 [ �2 � �(x ! 1 _ y ! 2) & (x ! 1 _ y ! 2) �1 [ �2 � �x ! 1 & y ! 2 & (x ! 1 _ y ! 2) false:8
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In general, independent conjunction is described by the axiom schemataP1 & P2 ) P1 ^ P2P1 ^ P2 ) P1 & P2 when P2 is pureP1 & P2 , P2 & P1(P1 & P2) & P3 , P1 & (P2 & P3)(P1 & P3) _ (P2 & P3) , (P1 _ P2) & P3(P1 _ P3) & (P2 _ P3) ) (P1 & P2) _ P3(9x: P1) & P2 , 9x: (P1 & P2) when x not free in P2;and the inference rule P1 ) P2P1 & P3 ) P2 & P3:Note, however, that the analogous schemata (P1 ) P2)) (P1 & P3 ) P2 &P3) is not valid.3 Inference Rules for Speci�cationsBy prohibiting expressions from depending upon the heap, we insure thatboth the partial-correctness rules given by Hoare and the analogous total-correctness rules (see, for example, [23, Chapter 3]) remain valid, even forassertions containing &. Thus we need to introduce additional rules onlyfor the new commands that depend upon or a�ect the heap. Since the newcommands always terminate, these rules are identical for partial and totalcorrectness.First, we have the command x :=E:i, which examines the tuple stored inthe heap at the location that is the value of E, and makes the ith componentof this tuple the value of x. This operation is similar enough to assignmentthat one might hope to extend Hoare's assignment axiom to describe it. Butthat axiom involves a substitution that would insert E:i into expressions,violating their purity. (If such substitutions were allowed, they would notpreserve &.) Instead, we must mimic the e�ect of such a substitution byusing existential quanti�ers: 9
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Suppose that x1, . . . , xn are distinct variables that do not occurfree in E, that 1 � i � n, and that xi does not occur free in P .Let P (i) denote the result of substituting xi for x in P . Thenf9xi: (P (i) ^ 9x1; : : : ; xi�1; xi+1; : : : ; xn: E ! x1; : : : ; xn)gx := E:ifPg:Next, we have the command x := consn(E1; : : : ; En), which extends theheap with a new location mapped into the n-tuple of values of E1, . . . , En,and then makes the new location the value of x. Again, we cannot useHoare's assignment axiom; instead we introduce an existential quanti�er inthe postcondition, in the style of Floyd [17]. The & operation is used toassert that the new location plays no role in any part of the postconditionthat is inherited from the precondition:Suppose that the variables x and x0 are distinct, and that x0 doesnot occur free in E1, . . .En, or P . Let X 0 denote the result ofsubstituting x0 for x in the expression or assertion X. ThenfPgx := consn(E1; : : : ; En)f9x0: (P 0 & x! E 01; : : : ; E 0n)g:Happily, this rule can be simpli�ed when the variable x does not occur in theprecondition or the right side of the command being speci�ed:Suppose that the variables x does not occur free in E1, . . . , Enor P . Then fPgx := consn(E1; : : : ; En)fP & x! E1; : : : ; Eng:Finally, we have a rule for the commandE:i:=E 0, which alters the heap atthe location that is the value of E by changing the ith component of the tupleat that location to the value of E 0. Here the & operator in the preconditionseparates an assertion about the heap at the value of E from assertions aboutother parts of the heap, which are not a�ected by the command:10
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Suppose that the variables x1, . . . , xm do not occur free in theexpression E or E 0, and that 1 � i � n. Thenf9x1; : : : ; xm: (E ! E1; : : : ; Ei; : : : ; En & P )gE:i := E 0f9x1; : : : ; xm: (E ! E1; : : : ; E 0; : : : ; En & P )g:The importance of using an intuitionistic logic is illustrated by the fol-lowing instance of the simpli�ed cons-rule:f:(9x: x ! 1; 2)gy := cons2(1; 2)f(:(9x: x ! 1; 2)) & y ! 1; 2g:Although its postcondition is always false, this instance is not unsound, be-cause the precondition is always false in our intuitionistic logic | since itmust hold for all extensions of the heap that was current immediately be-fore execution of the cons operation, including the extension that is currentimmediately afterwards.(This instance was unsound, however, in the classical logic used in thepreliminary version of this paper.)4 Inductive De�nition of PredicatesTo deal with real programs (even small ones), we must permit predicates tobe de�ned by induction over sets of abstract data.For instance, to prove the correctness of a program that uses some listrepresentation, it is not enough to be able to assert that something is alist representation; one must say that it represents a particular sequence ofvalues. Thus one must de�ne \is representation of" as a function from theabstract data set \sequence of values" to predicates.Speci�cally (though without being as formal as in previous sections), wewill allow variables that occur in assertions but not in programs (often calledlogical or ghost variables) to range over inductively de�ned sets, and we willallow functions from such sets to predicates to be de�ned by induction (i.e.,by primitive recursion).As a �rst example, consider the representation of sequences by singly-linked lists. (This example is essentially similar to one of Burstall's.) We11
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write � to denote the empty sequence, use other Greek letters as variablesranging over sequences, write � to indicate concatenation, and assume that avalue is a sequence of length one. Thenlist � (i; j) � i = jlist a�� (i; k) � 9j: i ! a; j & list � (j; k)is an inductive de�nition of a function list, from sequences to predicates, suchthat list � (i; j) asserts that the sequence � is represented by the list fragmentfrom location i to j. More precisely, it asserts that there is a succession ofcons2-cells beginning at location i, containing the successive elements of �as their �rst components, and linked together by their second components,with a �nal link containing j: �1?i - � � � - j�nFrom this de�nition, it is obvious thatlist a (i; j), i ! a; j:Less trivially, one can show by induction on the length of � thatlist ��� (i; k), 9j: list � (i; j) & list � (j; k);and from this result one can obtainlist ��b (i; k), 9j: list � (i; j) & j! b; k:Because of the use of & in the de�nition of list, the assertion list � (i; j)implies that the list fragment from i to j contains a distinct cons2-cell foreach element of �. Nevertheless, j can be the location of one of these cells,in which case a cyclic structure is being described. For instance, when � isnonempty, list � (i; i) describes a cycle whose length is the length of �.However, when i = nil, the assertion i ! a; j cannot hold, so thatlist a�� (i; k) cannot hold. In fact,list � (i; j)) 0@ (i = nil) (� = � ^ j = nil))^ (i 6= j ) � 6= �): 1A12
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A more complex example, which goes beyond Burstall's framework, is therepresentation of sequences by doubly-linked lists. We write dlist � (i; i0; j; j0)to assert the existence of a a collection of cons3-cells whose �rst componentsgive the elements of �, whose second components are the links of a forwardlist beginning at i with a �nal link containing j, and whose third componentsare the links of a backward list beginning at j0 with a �nal link containing i0:i0�1?i � � � � �- � � � - j�n?j0This function can be de�ned inductively bydlist � (i; i0; j; j0) � i = j & i0 = j0dlist a�� (i; i0; k; k0) � 9j: i ! a; j; i0 & dlist � (j; i; k; k0):From this de�nition, it is obvious thatdlist a (i; i0; j; j0), i ! a; j; i0 & i = j0:Less trivially, one can show by induction on the length of � thatdlist ��� (i; i0; k; k0), 9j; j0: dlist � (i; i0; j; j0) & dlist � (j; j0; k; k0);and from this result one can obtaindlist ��b (i; i0; k; k0), 9j0: dlist � (i; i0; k0; j0) & k0 ! b; k; j0:Much as in the singly-linked case, the assertion dlist � (i; i0; j; j0) describes alist fragment containing a distinct cons3-cell for each element of �. The exis-tence of unique back-links prevents a list from having a cyclic tail, but one canstill have an isolated cyclic list, which would be described by dlist � (i; i0; i; i0)when � is nonempty.Finally, to distinguish empty from nonempty lists, one can derivedlist � (i; i0; j; j0)) 0BBBBBBB@ (i = nil) (� = � ^ j = nil ^ i0 = j0))^ (j0 = nil) (� = � ^ i0 = nil ^ i = j))^ (i 6= j ) � 6= �)^ (i0 6= j0 ) � 6= �) 1CCCCCCCA13
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5 Annotated Speci�cationsFor even a small program, a formal proof of its speci�cation, in the senseof a sequence (or tree) of instances of inference rules, is usually too large tobe readable. Fortunately, one can annotate a speci�cation with intermediateassertions in such a way that its proof can be mechanically and straightfor-wardly derived from the annotations.In the next section, we will give an illustrative proof in the form of an an-notated speci�cation. Before doing so, however, it is useful | independentlyof the main subject of this paper | to de�ne the notion precisely (for thepartial-correctness case).The basic idea goes back at least to the \proof outlines" of concur-rent computations by Owicki and Gries [24], which have been formalizedby Schneider [25, Chapter 4]. Our formulation for sequential programs, how-ever, permits the omission of many intermediate assertions that can be de-rived straightforwardly from their context.We will call a speci�cation annotated if it can be derived from the inferencerules to be given below. All of these rules are easily derivable from Hoare'srules and the rules given in Section 3, except that intermediate assertionsoccur in the conclusions of certain rules. Because of the presence of theseintermediate assertions, the rules are determinate, i.e., every speci�cationcan be the conclusion of an instance of at most one rule, and the premissesof this instance are determined by its conclusion. Thus it is straightforwardto derive a proof of an annotated speci�cation from the speci�cation itself,and a Hoare-style proof (albeit using derived rules) can then be obtainedby erasing the intermediate assertions. (Of course, this proof will containveri�cation conditions, i.e., unproved implications between assertions, thatmust be veri�ed independently. Pragmatically, one must supply enough in-termediate assertions to make this veri�cation tractable.)The �rst two rules deal with assignment. Their determinacy stems fromthe fact that, in Hoare's assignment axiom, the precondition P=x ! E isdetermined by the postcondition P and the assignment command x := E:P0 ) P=x! EfP0g x := E fPg fP0g C fP=x! EgfP0g C ; x :=E fPg:A similar situation holds for the rule for the select-and-assign commandx := E:i, where again the precondition is determined by the postconditionand the command: 14
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Suppose that x1, . . . , xn are distinct variables that do not occurfree in E, that 1 � i � n, and that xi does not occur free in P .Let P (i) denote the result of substituting xi for x in P . ThenP0 ) 9xi: (P (i) ^ 9x1; : : : ; xi�1; xi+1; : : : ; xn: E ! x1; : : : ; xn)fP0g x := E:i fPgfP0g C f9xi: (P (i) ^ 9x1; : : : ; xi�1; xi+1; : : : ; xn: E ! x1; : : : ; xn)gfP0g C ; x := E:i fPg:In contrast, the remaining axioms for heap-dependent commands given inSection 3 have the property that their postcondition is determined by theirprecondition and the heap-dependent command. This insures the determi-nacy of:Suppose that the variables x and x0 are distinct, and that x0 doesnot occur free in E1, . . .En, or P . Let X 0 denote the result ofsubstituting x0 for x in the expression or assertion X. Then(9x0: (P 0 & x! E 01; : : : ; E 0n))) P 00fPg x := consn(E1; : : : ; En) fP 00gf9x0: (P 0 & x! E 01; : : : ; E 0n)g C fP 00gfPg x := consn(E1; : : : ; En) ;C fP 00g:Suppose that the variables x1, . . . , xm do not occur free in theexpression E or E 0, and that 1 � i � n. Then(9x1; : : : ; xm: (E ! E1; : : : ; E 0; : : : ; En & P ))) P 00f9x1; : : : ; xm: (E ! E1; : : : ; Ei; : : : ; En & P )g E:i := E 0 fP 00gf9x1; : : : ; xm: (E ! E1; : : : ; E 0; : : : ; En & P )g C fP 00gf9x1; : : : ; xm: (E ! E1; : : : ; Ei; : : : ; En & P )g E:i := E 0 ; C fP 00g:Next, we have rules for skip, if, and while commands:P ) P 0fPg skip fP 0g fP ^Bg C1 fP 0g fP ^ :Bg C2 fP 0gfPg if B then C1 else C2 � fP 0gfP ^ Bg C fPg (P ^ :B)) P 0fPg while B do C od fP 0g:15
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Finally, there are rules corresponding to Hoare's rules for sequencing,strengthening preconditions, and weakening postconditions. It is in the con-clusions of these rules that the intermediate assertions appear:fPg C fP 0g fP 0g C 0 fP 00gfPg C ; fP 0g C 0 fP 00gP ) P 0 fP 0g C fP 00gfPg fP 0g C fP 00g fPg C fP 0g P 0 ) P 00fPg C fP 0g fP 00g:6 An ExampleIn conclusion, we illustrate our formalism with an example: an annotatedpartial-correctness speci�cation of a program for deleting zero-valued ele-ments from a doubly-linked list.Throughout execution of the program, the forward linkage of the listbegins at location i and the backward linkage begins at location m. Thereis a single loop which moves forward through the list. Within this loop, thedeletion operation is symmetric about the cell to be deleted.Just before the test b = 0, the variable k points to the cell to be testedand perhaps removed, the preceding list fragment has a forward linkage fromi to k and a backward linkage from j to nil, and the following list fragmenthas a forward linkage from l to nil and a backward linkage from m to k:nil�̂1?i � � � � �- � � � - �̂m?j � - b?k � - �1?l � � � � �- � � � - nil�n?mIf the current cell is to be removed, the program tests whether the precedinglist fragment is empty, and resets either i or the last forward link to point tothe following list fragment. Then it performs a symmetric operation on thefollowing list fragment.The notation �� 0 denotes the sequence obtained from � by deleting alloccurrences of zero. 16
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fdlist 
 (i;nil;nil;m)gf9�; �; �̂: dlist �̂ (i;nil; i;nil) & dlist � (i;nil;nil;m)& ��� = 
 & �� 0 = �̂gk := i ; j := nil ;f9�; �; �̂: dlist �̂ (i;nil; k; j) & dlist � (k; j;nil;m)& ��� = 
 & �� 0 = �̂gwhile k 6= nil dof9�; �; �̂; b; l: dlist �̂ (i;nil; k; j) & k ! b; l; j & dlist � (l; k;nil;m)& ��b�� = 
 & �� 0 = �̂gb := k:1 ; l := k:2 ;f9�; �; �̂: dlist �̂ (i;nil; k; j) & k ! b; l; j & dlist � (l; k;nil;m)& ��b�� = 
 & �� 0 = �̂gif b = 0 thenf9�; �; �̂: dlist �̂ (i;nil; k; j) & dlist � (l; k;nil;m)& ��0�� = 
 & (��0)� 0 = �̂gf9�; �; �̂: dlist �̂ (i;nil; k; j) & dlist � (l; k;nil;m)& ��� = 
 & � � 0 = �̂gif j = nil thenf9�; �; �̂: �̂ = � & i = k & nil = j & dlist � (l; k;nil;m)& ��� = 
 & �� 0 = �̂gi := lf9�; �; �̂: �̂ = � & i = l & nil = j & dlist � (l; k;nil;m)& ��� = 
 & �� 0 = �̂gelsef9�; �; �̂; a; n: dlist �̂ (i;nil; j; n) & j ! a; k; n & dlist � (l; k;nil;m)& ��� = 
 & �� 0 = �̂�agj:2 := lf9�; �; �̂; a; n: dlist �̂ (i;nil; j; n) & j ! a; l; n & dlist � (l; k;nil;m)& ��� = 
 & �� 0 = �̂�ag� ; 17
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f9�; �; �̂: dlist �̂ (i;nil; l; j) & dlist � (l; k;nil;m)& ��� = 
 & � � 0 = �̂gif l = nil thenf9�; �; �̂: dlist �̂ (i;nil; l; j) & � = � & l = nil & k = m& ��� = 
 & �� 0 = �̂gm := jf9�; �; �̂: dlist �̂ (i;nil; l; j) & � = � & l = nil & j = m& ��� = 
 & �� 0 = �̂gelsef9�; �; �̂; a; n: dlist �̂ (i;nil; l; j) & l ! a; n; k & dlist � (n; l;nil;m)& ��a�� = 
 & �� 0 = �̂gl:3 := jf9�; �; �̂; a; n: dlist �̂ (i;nil; l; j) & l ! a; n; j & dlist � (n; l;nil;m)& ��a�� = 
 & �� 0 = �̂g�elsef9�; �; �̂: dlist �̂�b (i;nil; l; k) & dlist � (l; k;nil;m)& ��b�� = 
 & (��b)� 0 = �̂�bgf9�; �; �̂: dlist �̂ (i;nil; l; k) & dlist � (l; k;nil;m)& ��� = 
 & � � 0 = �̂gj := k� ;f9�; �; �̂: dlist �̂ (i;nil; l; j) & dlist � (l; j;nil;m)& ��� = 
 & �� 0 = �̂gk := lodfdlist (
 � 0) (i;nil;nil;m)g 18
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7 Future DirectionsThe work described here is very preliminary, so that the most immediateneed is to explore more examples. In particular, it is not clear that everyabstract structure represented by mutable data structures can be de�nedinductively; for example, mutable data structures are often used to representcyclic graphs.It may be possible to extend our approach to dynamic logic [26], wherecommands can occur as modal operators within assertions. This would ne-cessitate giving meaning to the execution of commands in incomplete states.When a command tries to examine a heap outside of its domain, it wouldraise a \heap fault" that would make the immediately enclosing assertionfalse.It is easy to prove ftruegx := cons2(1; 2) ;fx ! 1; 2gx := 3f(9x: x ! 1; 2) ^ x = 3g:Here the existentially quanti�ed location is disconnected from the data struc-tures accessible to the computation, and can be eliminated by garbage collec-tion. Of course, one can view garbage collection as a program optimizationwith no e�ect on observable computations, so that this example is sound.Nevertheless the fact that 9x: x ! 1; 2 is an \unobservable assertion" isworrisome.It should be straightforward to impose upon the present development atype system based upon recursive data type declarations (similar to those inStandard ML but without the reference concept). More re�ned type systemsmight permit the speci�cation of which �elds are mutable or where pointersare required to be unique.Finally, there is a need to move towards some form of higher-order formal-ism, akin to object-oriented programming, where the mutable shared datastructures can contain closures. An obvious question is whether there is aconnection with syntactic control of interference [27, 28, 29] or speci�cationlogic [30, 31, 32], both of which deal with interference in a higher-order butheap-free setting. Super�cially this work seems quite di�erent, but the re-curring use of possible-world semantics is suggestive.19
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